Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 13: 947021, 2022.
Article in English | MEDLINE | ID: covidwho-2316385

ABSTRACT

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.


Subject(s)
COVID-19 , Viral Vaccines , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , SARS-CoV-2 , Vaccination
2.
J Infect Dis ; 2022 Jun 07.
Article in English | MEDLINE | ID: covidwho-2298463

ABSTRACT

BACKGROUND: Longer-term humoral responses to two-dose COVID-19 vaccines remain incompletely characterized in people living with HIV (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement and viral neutralization against wild-type and Omicron strains up to six months following two-dose vaccination, and one month following the third dose, in 99 PLWH receiving suppressive antiretroviral therapy, and 152 controls. RESULTS: Though humoral responses naturally decline following two-dose vaccination, we found no evidence of lower antibody concentrations nor faster rates of antibody decline in PLWH compared to controls after accounting for sociodemographic, health and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after two doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than against wild-type. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after two- and three-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.

3.
AIDS ; 37(5): 709-721, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2267958

ABSTRACT

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Subject(s)
COVID-19 , HIV Infections , Humans , Antibody Formation , COVID-19 Vaccines , COVID-19/prevention & control , HIV Infections/complications , HIV Infections/drug therapy , SARS-CoV-2 , Vaccination , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
4.
Open Forum Infect Dis ; 10(3): ofad073, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2273426

ABSTRACT

Background: Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods: We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results: Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions: Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.

5.
PLoS One ; 18(3): e0283025, 2023.
Article in English | MEDLINE | ID: covidwho-2273209

ABSTRACT

In 2018, the pre-exposure prophylaxis (PrEP) program was initiated in British Columbia (BC), Canada, providing PrEP at no cost to qualifying residents. This observational study discussed the steps to develop key evidence-based monitoring indicators and their calculation using real-time data. The indicators were conceptualized, developed, assessed and approved by the Technical Monitoring Committee of representatives from five health authority regions in BC, the BC Ministry of Health, the BC Centre for Disease Control, and the BC Centre for Excellence in HIV/AIDS. Indicator development followed the steps adopted from the United States Centers for Disease Control and Prevention framework for program evaluation in public health. The assessment involved eight selection criteria: data quality, indicator validity, existing scientific evidence, indicator informativeness, indicator computing feasibility, clients' confidentiality maintenance capacity, indicator accuracy, and administrative considerations. Clients' data from the provincial-wide PrEP program (January 2018-December 2020) shows the indicators' calculation. The finalized 14 indicators included gender, age, health authority, new clients enrolled by provider type and by the health authority, new clients dispensed PrEP, clients per provider, key qualifying HIV risk factor(s), client status, PrEP usage type, PrEP quantity dispensed, syphilis and HIV testing and incident cases, and adverse drug reaction events. Cumulative clients' data (n = 6966; 99% cis-gender males) identified an increased new client enrollment and an unexpected drop during the COVID-19 pandemic. About 80% dispensed PrEP from the Vancouver Coastal health authority. The HIV incidence risk index for men who have sex with men score ≥10 was the most common qualifying risk factor. The framework we developed integrating indicators was applied to monitor our PrEP program, which could help reduce the public health impact of HIV.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , COVID-19 , HIV Infections , Pre-Exposure Prophylaxis , Sexual and Gender Minorities , Male , Humans , British Columbia/epidemiology , Homosexuality, Male , Acquired Immunodeficiency Syndrome/epidemiology , HIV Infections/epidemiology , HIV Infections/prevention & control , HIV Infections/drug therapy , Pandemics , COVID-19/epidemiology , Anti-HIV Agents/therapeutic use
6.
Lancet Reg Health Am ; : 100369, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2042001

ABSTRACT

Background: Public health measures designed to reduce SARS-CoV-2 transmission led to reduced access to care and prevention services for people living with or at risk of acquiring HIV, particularly during the initial introduction of extensive restrictions. This reduction in access may have contributed to increases in HIV transmission not outweighed by decreases in transmission occurring as a result of reduced contact rates promoted by the same public health measures. Methods: We synthesize available province-wide HIV data in British Columbia, Canada, together with public mobility data to phylogenetically investigate the early impacts of SARS-CoV-2 on HIV transmission. Cluster growth, coalescent branching events and lineage-level diversification rates were assessed in "pre-lockdown" (January 22-March 21, 2020), "lockdown" (March 22-May 20, 2020) and "post-lockdown" (May 21-July 19, 2020) to facilitate comparison of transmission trends across key populations. Findings: Results reveal increased HIV transmission in a limited number of clusters in association with reduced access to health services during the initial introduction of SARS-CoV-2-related restrictions. In particular, clusters associated with people who inject drugs (PWID) show rapid growth, extensive branching events in phylogenetic trees during and following the lockdown period, and elevated median change in individuals' viral diversification rates during lockdown compared to clusters associated with men who have sex with men (MSM), consistent with increased transmission rates between PWID. Interpretation: Increased vigilance and innovative targeted solutions are critical to offset potential negative impacts of SARS-CoV-2 or future pandemic-related restrictions on HIV epidemic dynamics. Funding: Funding sources include Genome Canada and Genome BC, the Public Health Agency of Canada, the BC Centre for Excellence in HIV/AIDS, and the Canadian Institutes of Health Research Coronavirus Rapid Response Programme. Student funding includes a NSERC CREATE scholarship and a Canadian Institutes of Health Research graduate fellowship.

7.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2034121

ABSTRACT

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant’s wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant’s responses to the cohort ≥95th percentile, but even this strong “hybrid” immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.

8.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-1840054

ABSTRACT

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
9.
NPJ Vaccines ; 7(1): 28, 2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1713167

ABSTRACT

Humoral responses to COVID-19 vaccines in people living with HIV (PLWH) remain incompletely characterized. We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain (RBD), ACE2 displacement and viral neutralization activities one month following the first and second COVID-19 vaccine doses, and again 3 months following the second dose, in 100 adult PLWH and 152 controls. All PLWH were receiving suppressive antiretroviral therapy, with median CD4+ T-cell counts of 710 (IQR 525-935) cells/mm3, though nadir CD4+ T-cell counts ranged as low as <10 cells/mm3. After adjustment for sociodemographic, health and vaccine-related variables, HIV infection was associated with lower anti-RBD antibody concentrations and ACE2 displacement activity after one vaccine dose. Following two doses however, HIV was not significantly associated with the magnitude of any humoral response after multivariable adjustment. Rather, older age, a higher burden of chronic health conditions, and dual ChAdOx1 vaccination were associated with lower responses after two vaccine doses. No significant correlation was observed between recent or nadir CD4+ T-cell counts and responses to two vaccine doses in PLWH. These results indicate that PLWH with well-controlled viral loads and CD4+ T-cell counts in a healthy range generally mount strong initial humoral responses to dual COVID-19 vaccination. Factors including age, co-morbidities, vaccine brand, response durability and the rise of new SARS-CoV-2 variants will influence when PLWH will benefit from additional doses. Further studies of PLWH who are not receiving antiretroviral treatment or who have low CD4+ T-cell counts are needed, as are longer-term assessments of response durability.

10.
J Infect Dis ; 225(7): 1129-1140, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1566022

ABSTRACT

BACKGROUND: The magnitude and durability of immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines remain incompletely characterized in the elderly. METHODS: Anti-spike receptor-binding domain (RBD) antibodies, angiotensin-converting enzyme 2 (ACE2) competition, and virus neutralizing activities were assessed in plasma from 151 health care workers and older adults (range, 24-98 years of age) 1 month following the first vaccine dose, and 1 and 3 months following the second dose. RESULTS: Older adults exhibited significantly weaker responses than younger health care workers for all humoral measures evaluated and at all time points tested, except for ACE2 competition activity after 1 vaccine dose. Moreover, older age remained independently associated with weaker responses even after correction for sociodemographic factors, chronic health condition burden, and vaccine-related variables. By 3 months after the second dose, all humoral responses had declined significantly in all participants, and remained significantly lower among older adults, who also displayed reduced binding antibodies and ACE2 competition activity towards the Delta variant. CONCLUSIONS: Humoral responses to COVID-19 mRNA vaccines are significantly weaker in older adults, and antibody-mediated activities in plasma decline universally over time. Older adults may thus remain at elevated risk of infection despite vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Humoral , Infant , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
12.
J Mol Diagn ; 23(8): 907-919, 2021 08.
Article in English | MEDLINE | ID: covidwho-1248982

ABSTRACT

Quantitative viral load assays have transformed our understanding of viral diseases. They hold similar potential to advance COVID-19 control and prevention, but SARS-CoV-2 viral load tests are not yet widely available. SARS-CoV-2 molecular diagnostic tests, which typically employ real-time RT-PCR, yield semiquantitative results only. Droplet digital RT-PCR (RT-ddPCR) offers an attractive platform for SARS-CoV-2 RNA quantification. Eight primer/probe sets originally developed for real-time RT-PCR-based SARS-CoV-2 diagnostic tests were evaluated for use in RT-ddPCR; three were identified as the most efficient, precise, and sensitive for RT-ddPCR-based SARS-CoV-2 RNA quantification. For example, the analytical efficiency for the E-Sarbeco primer/probe set was approximately 83%, whereas assay precision, measured as the coefficient of variation, was approximately 2% at 1000 input copies/reaction. Lower limits of quantification and detection for this primer/probe set were 18.6 and 4.4 input SARS-CoV-2 RNA copies/reaction, respectively. SARS-CoV-2 RNA viral loads in a convenience panel of 48 COVID-19-positive diagnostic specimens spanned a 6.2log10 range, confirming substantial viral load variation in vivo. RT-ddPCR-derived SARS-CoV-2 E gene copy numbers were further calibrated against cycle threshold values from a commercial real-time RT-PCR diagnostic platform. This log-linear relationship can be used to mathematically derive SARS-CoV-2 RNA copy numbers from cycle threshold values, allowing the wealth of available diagnostic test data to be harnessed to address foundational questions in SARS-CoV-2 biology.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/virology , Humans , Limit of Detection , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Viral Load/methods
13.
Open Forum Infect Dis ; 7(11): ofaa488, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-864089

ABSTRACT

Nasopharyngeal swabs are critical to the diagnosis of respiratory infections including coronavirus disease 2019, but collection techniques vary. We compared 2 recommended nasopharyngeal swab collection techniques in adult volunteers and found that swab rotation following nasopharyngeal contact did not recover additional nucleic acid (as measured by human DNA/RNA copy number). Rotation was also less tolerable for participants. Notably, both discomfort and nucleic acid recovery were significantly higher in Asian participants, consistent with nasal anatomy differences. Our results suggest that it is unnecessary to rotate the swab in place following contact with the nasopharynx and reveal that procedural discomfort levels can differ by ethnicity.

14.
J Infect Dis ; 222(6): 899-902, 2020 08 17.
Article in English | MEDLINE | ID: covidwho-628335

ABSTRACT

False-negative severe acute respiratory syndrome coronavirus 2 test results can negatively impact the clinical and public health response to coronavirus disease 2019 (COVID-19). We used droplet digital polymerase chain reaction (ddPCR) to demonstrate that human DNA levels, a stable molecular marker of sampling quality, were significantly lower in samples from 40 confirmed or suspected COVID-19 cases that yielded negative diagnostic test results (ie, suspected false-negative test results) compared with a representative pool of 87 specimens submitted for COVID-19 testing. Our results support suboptimal biological sampling as a contributor to false-negative COVID-19 test results and underscore the importance of proper training and technique in the collection of nasopharyngeal specimens.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Specimen Handling/methods , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , False Negative Reactions , Humans , Nasopharynx/virology , Pandemics , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL